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Abstract—Reuse distance analysis is a runtime approach
that has been widely used to accurately model the memory
system behavior of applications. However, traditional reuse
distance analysis algorithms use tree-based data structures and
are hard to parallelize, missing the tremendous computing
power of modern architectures such as the emerging GPUs.
This paper presents a highly-parallel reuse distance analysis
algorithm (HP-RDA) to speedup the process using the SPMD
execution model of GPUs. In particular, we propose a hybrid
data structure of hash table and local arrays to flatten
the traditional tree representation of memory access traces.
Further, we use a probabilistic model to correct any loss of
precision from a straightforward parallelization of the original
sequential algorithm. Our experimental results show that using
an NVIDIA GPU, our algorithm achieves a factor of 20 speedup
over the traditional sequential algorithm with less than 1% loss
in precision.

I. INTRODUCTION

On modern architectures, the performance of applications

critically depends on their memory access behavior, e.g.,

whether they demonstrate a degree of locality and whether

their patterns of data reuses can be adequately exploited

by the cache hierarchy of modern computers. To accurately

model the data reuse patterns of applications, existing re-

search has resorted to the concept of reuse distance (also

known as stack reuse distance), which is defined as the

number of distinct data items accessed between two suc-

cessive references to the same data [9], [2]. Reuse distance

analysis can be used to directly predict various aspects of

the memory system performance of an application, e.g. the

hit ratio when running on a fully-associative LRU cache [5],

the whole-program locality [9], the locality phases [25], and

the miss ratios across different program inputs [34]. It can

also be used to guide various optimizations, e.g. to generate

cache hints [6], to guide loop tiling [31], [30], and to reorder

code and data to improve locality [17].

To demonstrate the process of reuse distance analysis,

Figure 1 shows a small sequence of memory accesses

(also called a memory trace) which presumably can be

dynamically generated online while executing some user

application. In the example trace, the distance between the

two accesses of b is 5, as five distinct elements, c, g, e, f ,

and a, have been accessed in between. To analyze the whole

trace, the reuse distance between each pair of consecutive

accesses to the same data must be computed, therefore with

a worst-case complexity of O(N2), where N is the length

of the memory trace. The result of reuse distance analysis

is typically formulated as a histogram of the percentages of

memory accesses with reuse distances falling inside various

ranges between 0 and ∞.

Figure 1: Reuse distance example [9].

Computing a full reuse distance histogram is therefore

quite expensive [23]. One option is to perform the analysis

offline by collecting the sequence of all memory references

made by a user application and then analyzing the whole

trace afterwards. However, the space required for storing the

whole trace could be overwhelming for long-running appli-

cations. As a result, existing research mostly adopted online

analysis where fragments of memory traces are collected

and forwarded for analysis while running the application.

Existing research has exploited a number of tree-based

data structures,e.g., m-ary tree, AVL-tree [20], and splay

tree [26], to implement the algorithm efficiently. Ding et.

all [9] also leveraged approximate reuse distance analysis

to shorten the analysis period. However, even among the

most efficient implementations, analyzing every memory
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reference of a program while evaluating the code slows

down the program execution by at least 1-2 orders of

magnitude [26].

The emerging massively parallel Graphics Processing

Units (GPUs) offer an opportunity to accelerate this process.

In particular, applications can be evaluated on a conventional

multi-core CPU while a separate GPU is dedicated to analyz-

ing the dynamically collected memory traces from running

the application. However, the traditional tree-based reuse

distance analysis algorithms are fundamentally sequential

and hard to parallelize on GPUs, as a global shared tree data

structure needs to be modified when analyzing each memory

reference in the trace (for more details, see Section II). To

parallelize such algorithms, a key challenge is to eliminate

artificial dependences introduced by the global shared tree

data structure. Further, to enable massive parallelism, the

conventional reuse distance analysis algorithm needs to be

reformulated so that thousands of sub-tasks can be used to

operate on different portions of a memory trace simultane-

ously.

This paper presents a new parallel reuse distance analysis

algorithm, the HP-RDA (Highly Parallel Reuse Distance

Analysis) algorithm, to overcome the above challenges

while using GPUs to dramatically promote the efficiency

of existing sequential algorithms. In particular, we propose

a hybrid data structure of hash table and local arrays to

flatten the traditional tree representation of memory access

traces. Then, we use a probabilistic model to correct any

loss of precision from a straightforward parallelization of

the original sequential algorithm. Out experimental results

show that using an NVIDIA GPU, our algorithm achieves a

factor of 20 speedup over the traditional sequential algorithm

with less than 1% loss in precision.

The rest of the paper is organized as follows. Section II

introduces the traditional sequential reuse analysis algorithm

proposed by Ding et al [9]. Section III presents our highly-

parallel algorithm, the hybrid data structure of hash table

and local arrays, and the probabilistic model to correct the

final results. Section IV discusses implementation details on

GPUs. Section V presents experimental results. Section VI

discusses related work, and Section VII concludes.

II. BACKGROUND

A reuse distance analysis algorithm takes as input a

sequence of memory addresses accessed during program

execution, measures the reuse distance between each pair of

consecutive accesses to the same address, and then reports

the collected data. The sequence of memory addresses is

typically called a memory trace, and a balanced tree, such

as the data structure shown in Figure 2, is often used to

dynamically organize the memory references for efficient

lookup of the access history. For example, consider the

balanced tree T in Figure 2, which is constructed after

processing the first 11 memory accesses in Figure 1. Here

each memory address that has been processed corresponds to

a unique tree node with three fields: the memory address x,

the time step t that x was last accessed, and the size (number

of nodes) w of the sub-tree beneath the current node. At time

step 12, the memory address b is accessed. The new reuse

distance for b can be computed as the number of existing

nodes (xj , tj , wj) ∈ T s.t. xj �= b and tj > tb, where tb =

4 is the latest access time of b in the existing balanced tree

in Figure 2. A hash table can be used to dynamically map

each memory address to its latest access time in T .

���������

Figure 2: Balanced tree representation of the first 11 memory

references shown in Figure 1. Each node corresponds to a

distinct memory address x with t being its latest access time

and with w number of nodes in the subtree underneath [9]

.
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Figure 3: Sequential reuse distance analysis algorithm [9]

Figure 3 shows the sequential reuse distance analysis
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algorithm introduced by Ding et al [9]. A similar algorithm

was also used by Almasi et al [2]. Here, the routine

Reuse Analysis traverses an existing balanced tree ptree in

pre-order and computes the reuse distance for each memory

reference v in three steps.

1) Find the time step that v was last accessed by looking

up a global hash table. Save it to variable tv .

2) Compute the reuse distance of v as the number of

nodes that have later access time than tv in ptree.

Erase the previous access to address v in ptree using

tv as a key.

3) Insert a new access to address v into ptree under the

current time step. Rotate the tree if necessary to keep

it balanced.

Note that since significant modifications are made to ptree
when processing each memory access, the algorithm is

fundamentally sequential and difficult to parallelize.

III. THE HP-RDA ALGORITHM

The goal of our Highly-Parallel Reuse Distance Analysis

algorithm is to reformulate the sequential algorithm so

that massive parallelism can be exploited using the SPMD

execution model on GPUs. The key insight is the use of

a hybrid data structure of hash table and local arrays to

flatten the traditional tree representation of memory access

traces, and the use of a probabilistic model to correct any

loss of precision from a straightforward parallelization of

the original sequential algorithm. Section III-F discusses the

accuracy of the computed results and the generality of our

approach.

A. The Overall Algorithm

The overall HP-RDA algorithm adopts a divide-and-

conquer approach. First, to support massive parallelism, we

divide the input memory trace into a large number of disjoint

smaller traces to be analyzed simultaneously by multiple

threads. Then, the results of analyzing the thread-local traces

are combined to compute a solution for the original input.

Since processing disjoint fragments of the original memory

trace in parallel may violate dependence constraints between

memory references in the original input trace, a merging step

tries to correct such violations by recovering the lost reuse

distance information from a set of statistics pre-computed

for each thread-local trace. Finally, we use a probabilistic

model, presented in Section III-E, to adjust the final solution

and reduce error rates.

Figure 4 gives a skeleton of our algorithm, which includes

the following four steps.

1) Preprocessing the input: To reduce the required global

memory space and to distribute balanced workload among

the CUDA threads, this step modifies the input trace so that

when a single memory address is repeated by a sequence

of neighboring references, all the repetitive references are

removed (e.g., a sequence of aaaa would be replaced

Figure 4: HP-RDA algorithm.

with a single a). In particular, since the reuse distance of

these continuously repeated elements is always zero, the

information is easily computed on-the-fly during the trace

transformation. Note that this step can also be applied in

the sequential algorithm to reduce tree insertion operations.

2) Dividing up the input trace: This step divides an input

trace with N memory references equally across n threads,

with each thread-level trace containing N/n references. In

Figure 4, the local trace to be processed by each thread i is

saved in local trace[i].
3) Analyzing thread-local traces in parallel: This step is

evaluated by a large number of CUDA threads concurrently,

with each thread analyzing it’s own thread-local trace to

compute relevant reuse distances and summarize various

statistics of the trace for later processing. Section III-C

presents details of this step.

4) Merging thread-local results: This step is evaluated

after all the threads have finished evaluating the previous

step, so that the thread-local results in local result are now

ready to be combined into reuse distances for the original

input. Note that this step is also parallelized, where reuse

distances for different memory addresses are merged concur-

rently. Because concurrent thread-level analyses may have

violated a set of dependence constraints among memory

references in the original input, the reuse distances for some

memory references may have to be approximated in the

merging process. Section III-D presents details of this step

and how to further adjust the final results to reduce the loss

of precision based on a probabilistic model.

B. Revising Data Structures

The sequential reuse distance analysis algorithm in Sec-

tion II uses a balanced tree to dynamically store the latest

access time of memory addresses processed so far. The tree

needs to be modified and rotated when processing each

memory reference. Since each tree rotation may operate on

a large number of branches, a GPU algorithm operating

on such a tree data structure could easily result in all

threads being sequentialized waiting to operate on the shared
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branches. To overcome this difficulty, we designed a hybrid

data structure of a hash table and a set of local arrays to

support massive parallelism by a large number of CUDA

threads.

1) The Hash Table: We use a global hash table to map

each memory address (key) in the original input trace to a list

summarizing how the address has been accessed within vari-

ous thread-local traces. In Figure 5(a), access info illustrates

the data structure used to summarize the access information

of a memory address v within a thread-local trace. Here,

the tid field remembers the index of the tread-local trace

(i.e., the thread id used to analyze the trace), first stores

the number of distinct memory references within the trace

before encountering the first access of v, latest stores the

number of distinct memory references after processing the

last access of v in the trace, and the next pointer is used

to organize multiple access info objects (computed from

different thread-local traces) into a list.

The sequential algorithm in Section II also uses a hash

table to remember the previous access time of each memory

address. Our hash table is different in that it contains more

information and is used to summarize the statistics com-

puted from a large number of concurrent threads analyzing

different portions of the original input trace.

2) Local Arrays: To support concurrent thread-level anal-

ysis, we associate with each thread a private array of N
entries, where N is the length of the thread-local trace, to

keep track of the latest reference of each memory address

within the trace. Initially the entire thread-local trace is

copied into the private array. While processing each entry

j = 1, ..., N of the trace, ∀i = 1, ..., j − 1, the ith entry

within the trace is the latest reference to a memory address

if and only if local array[i] �= 0, where local array[i] is

ith entry of the private array.

Figure 5(b) illustrates the content of a local array when

processing the 13th entry a thread-local trace. In particular,

when index = 13, the memory address a is encountered.

Since local array[2] = a, the previous latest access of

a was encountered when processing the 2nd entry of the

trace. Since the local array contains 5 non-zero entries, e,

g, c, b, and d, between its 2nd and the 13th entries, the

resulting reuse distance for a is 5. After recording the reuse

distance, we modify local array[13] with value a since

entry 13 has now become the latest access to a. Then, we

reset local array[2] to zero before proceeding to process

the next address in the local trace.

C. Thread-Level Analysis

Figure 5(c) summarizes the steps performed by each

CUDA thread spawned by our algorithm. The algorithm

takes a single input, the local trace to be analyzed by the

thread, and compute two sets of information: the reuse

distances of the local trace, and the statistics of how each

address is accessed within the local trace. The reuse dis-

tances are returned as result of the thread-level analysis,

and the thread-local statistics are stored inside the global

hash table as a set of access info objects (see Figure 5(a)),

one for each address referenced inside the local trace. The

evaluation includes the following three steps.

1) Step 1: Initialize the local array from the input trace.

2) Step 2: For each index i of the local array and the

corresponding memory access v stored in local array[i],
query the lash table to find out the time step tv that v
was last accessed. Then, set the reuse distance of v to be

the number of non-zero elements between tv and i with

local array. Finally, after saving the reuse distance for v,

reset local array[tv] to zero, and enter the additional access

information into the hash table,

3) Step 3: Count the number of distinct memory ad-

dresses inside the local trace.

Figure 6 illustrates the output of the algorithm after

analyzing a trace of 16 memory references. As example, the

memory address b appears in all three thread-local traces. In

the 2nd thread-local trace, three distinct memory addresses,

e, f and a, are accessed before the first access of b, and

one distinct memory address, a, has been accessed after the

latest access of b.

�	
��� �����������
 �������� ��������

Figure 6: Summary information for thread-local traces

(count contains the number of distinct memory addresses

in each thread-local trace. For each memory address v in

the hash table, the first column lists the number of other

memory addresses accessed before the first access of v
in each thread-local trace, and the latest column lists the

number of addresses accessed after the latest access of v.

D. Merging Thread-Local Results

Figure 7 shows our algorithm for merging reuse distances

computed by different threads. The algorithm takes a single

input, the collection of reuse distances computed so far, and
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Figure 5: Hybrid hash table and local arrays, together with the algorithm for thread-level analysis.

extends the collection by considering situations where a pair

of references to the same memory address span across mul-

tiple thread-local traces. Such information is recovered from

the set of access info objects stored in the global hash table,

illustrated in Figure 5(a) and discussed in Section III-B1.

In particular, for each memory address v stored in the

hash table, the algorithm traverses the access info objects

of v in increasing order of their thread ids (i.e., in the

original ordering of the corresponding thread-local traces). If

consecutive access info objects are created by two distinct

threads with ids i and j respectively, where i < j, the reuse

distance between the last reference of v in the ith local trace

and the first reference of v in the jth local trace can be

computed as:

dist(v) = Get Access Info(v, i).last+
j−1

Σ
k=i+1

(count[k]) +Get Access Info(v, j).first
(1)

where Get Access Info(v, i) returns the access info ob-

ject of memory address v created by thread i, and count[k]
contains the number of distinct memory addresses processed

by thread k. Figure 8 shows an example of merging the

thread-level results.

While Formula 1 can be used to extensively recover reuse

distances omitted by thread-level analysis, the result could

still remain imprecise and thus require the invocation of

another routine, Adjust Distance in Figure 7, to further

recover dependence constraints that may have been violated

by the thread-level analysis. Details of the adjustment is

discussed in Section III-E.

����

Figure 7: Algorithm for merging thread-level results.

E. A Probabilistic Model For Adjusting Solutions

Figure 8 shows an example where using the algorithm

steps so far, an incorrect reuse distance value, 6, would be

returned for a memory reference, g, instead of its correct

reuse distance which should be 4. The loss of precision

comes from missing the overlap of distinct memory ad-

dresses inside the 2nd and 3rd thread-local traces (a and

b exist in both thread-local traces). Since a straightforward
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Figure 8: Example for merging thread-level results.

merging step ignores such overlap, the reuse distance (dist)
computed from Formula 1 could be larger than the actual

value (distreal). We correct the result using the following

formula:

distreal = dist ∗ ef if dist > M (2)

where M is the number of distinct memory addresses in

the entire original trace t, and ef is called as an effective
factor of t. Intuitively, for an input trace t, ef represents the

probability that there is no overlap between two arbitrary

thread-local traces taken from t. Below, we discuss how to

compute ef .

Given a trace t of N references to M memory addresses,

assume t has been equally divided into n thread-level traces,

t1, ..., tn, each with a set of local memory references S1,

S2, ... Sn, respectively. We define the effective factor ef of

t as:

ef =
M

Σn
i=1 count[i]

(3)

where count[i] is the number of distinct memory ad-

dresses in Si. Note that the number of distinct memory

addresses in (
⋃n

i=1 Si) is M. Hence the effective factor (ef )

of t is computed as the inverse of the average number of

times that an arbitrary memory address may appear simul-

taneously across different thread-local traces. (i.e., inverse

of the likelihood that two arbitrary thread-local traces may

overlap). The value of ef ranges from 0 to 1. Its upper bound

(efmax=1) can be found when ∀(i, j), Si∩Sj = ∅; i.e., there

is no overlap among the thread local traces. Its lower bound

( lim
n→∞ efmin = 0) can be found when there is a thread-local

trace Sk that subsumes all the other local traces; i.e.,

efmin =
count[k]

Σn
i=1 count[i]

when ∃k ∈ (1..n), s.t. ∀j �= k, Sj ⊂ Sk

(4)

F. Correctness And Generality

Some of the reuse distances computed by our HP-RDA

algorithm could be slightly different from those computed

by the sequential algorithm in Section II. However, after

applying the probabilistic model in Section III-E, the loss of

precision is negligible in a majority of practical situations,

as confirmed by our experimental results.

While our algorithm applies only to the reuse distance

analysis algorithm, the overall approach, including the re-

design of the data structures and the adjustment of solutions

based on a probabilistic model, can be leveraged for other

trace analysis problems, e.g., pattern seeking in a given trace

(used in biological areas for protein analysis) [22], trace-

based cache/memory bank simulator [29], [19], etc.

IV. ALGORITHM IMPLEMENTATION ON GPU

We have specialized our implementation of the HP-RDA

algorithm for the NVIDIA GPGPU architecture by accom-

modating varying architectural features such as the two layer

thread block and thread level parallelism, the hierarchical

memory system, among others.

A. Two-levels Of Parallelization

CUDA supports parallelism at two levels, the thread block

level and the thread level. Accordingly, we first divide the

input trace into multiple thread-block-level traces and then

divide each thread-block-level trace into many thread-level

traces. Figure 9 illustrates the distribution of tasks among the

threads. Note that the workload being distributed include not

only the analysis of thread-local traces but also the merging

of local results at both the thread and thread-block levels.

Further, the workload assigned to each thread varies at

different algorithmic steps. At the thread-level analysis step,

each thread processes a thread-local trace. At the thread-

level merging step, each thread processes a group of distinct

elements from the hash table of its parent thread block.

Finally, at the thread-block-level merging step, each thread

processes a group of distinct elements across all the hash

tables from different thread blocks.

B. Pool-Based Dynamic Memory Allocation

Our HP-RDA algorithm needs to dynamically allocate

memory to store a large amount of data, e.g., the hash table

nodes and the summary information of thread-local threads.

However, CUDA does not support malloc. To resolve this

issue, we implemented a lightweight pool-based dynamic

memory allocator on GPU and provided support for efficient

lock-free concurrent insertions to the hash table using the

approach by Hong et. al [11]. Our implementation allocates

a large block of global memory, which acts as two memory

pools, for each thread block. Each memory pool uses a free-
space-ptr pointer to keep track of the free spaces. Every

time malloc is invoked from a CUDA kernel, the free-
space-ptr is atomically incremented using the atomicAdd()
operation provided by GPU. One of the memory pools is

dedicated to hold hash nodes, enabling us to directly count

the number of distinct memory addresses in each thread-

block-local trace from the memory pool. The other pool is

used for other miscellaneous data, including the access info
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Figure 9: Workload distribution for HP-RDA. Each color represents the workload for a thread, varying with steps. And the

grey horizontal strips represent synchronization operations.

for each memory reference, the next pointer used to link the

access information together (as shown in Figure 5(a)), and

some other temporary variables. The memory pools are be

released until the reuse distance analysis for the whole input

trace has been completed.

C. Memory Utilization

Inside the NVIDIA GPU, each CUDA thread can access a

private local memory, a shared memory owned by all threads

of the same thread block, and a global memory shared by all

threads running on the same GPU [1]. Our implementation

allocates the dynamic memory pools on the global memory

(GM). Therefore the hash table, together with the summary

information of all thread-local threads, are all located on the

GM. The frequently used free-space-ptr variables, the total

count of distinct elements for each thread-local trace, and

the histograms holding the analysis result of each thread-

local trace, are all allocated on the shared memory for fast

access. The thread local arrays and temporary variables are

placed in the thread-local memory.

V. PERFORMANCE EVALUATION

Through experimental evaluation, we compare our HP-

RDA algorithm with the sequential reuse distance analysis

algorithm by Ding et. al [9] and seek to confirm two

conclusions: (1) our HP-RDA algorithm offers significant

performance advantages over the conventional sequential

reuse distance analysis approach, and (2) the potential loss

of precision using our parallel algorithm on GPUs is minor

and likely negligible.

A. Experimental Methodology

Binary Instrumentation. Both the sequential reuse dis-

tance analysis algorithm and our HP-RDA algorithm [9]

are implemented as plugins for the PIN binary instrumen-

tation system [16]. The instrumented application collects

all the memory addresses referenced, combines them into

fragments of memory traces, and then feed these fragments

of traces to its plugin for processing.

Platform. We ran our experiments on a Intel 2.13GHz

quad-core Xeon E5506 with 32KB L1 DCache, 32KB

ICache, and 4MB L2 cache. The machine comes with a

NVIDIA Fermi Tesla C2050 GPGPU from NVIDIA. The

GPGPU has a 3GB global memory and 14 Streaming

Multi-processors(SMs), each containing 32 Streaming Pro-

cessors(SPs). Each SM has 32768 registers and a 48KB local

scratchpad memory shared by all active threads of the SM.

We evaluated the sequential reuse distance analysis algo-

rithm on the host CPU and evaluated our HP-RDA algorithm

on the GPGPU. Additionally, to isolate the algorithmic ad-

vantage of our HP-RDA algorithm from the extra degrees of

parallelism offered by GPUs, we also evaluated an OpenMP

implementation of our divide-and-conquer algorithm on the

host CPU. The instrumented application and the collection

of memory traces were always evaluated on the host CPU.

Workloads. We evaluated both the sequential reuse dis-

tance analysis and our HP-HDA algorithms using selected

programs from a set of CPU SPEC2000 benchmarks, using

the test inputs of the benchmarks.

B. Algorithm Efficiency

Figure 10 presents the speedup that our HP-RDA algo-

rithm achieved over the sequential reuse distance analy-
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sis algorithm, using both a GPU implementation and an

OpenMP implementation on CPUs. Here the performance

statistics include the time spent analyzing the traces using

both algorithms but omit the cost of instrumentation and

trace collection. From Figure 10, when running on a GPU

platform, our HP-RDA algorithm can achieve up to a factor

of 33 speedup, with a factor of 19.6 speedup in average.

When implemented using OpenMP on the host CPU, our

algorithm shows a factor of 3 speedup in average.

Figure 11 presents speedups of evaluating the whole in-

strumented application when using our HP-RDA over using

the sequential algorithm. Here the performance statistics

include both the time spent analyzing the traces and the

cost of instrumentation and trace collection. As shown in the

figure, even when amortized over the cost of instrumenting

and evaluating the user application, our HP-RDA algorithm

can achieve up to a factor of 22 speedup, with a factor

of 15.1 speedup in average, when evaluated on the GPU.

Essentially, our GPU parallelized HP-RDA algorithm can

reduce the time required for reuse distance analysis from

hours to minutes, significantly reducing the wait time for

such analysis and thus improving the productivity of devel-

opers. The speedup of its OpenMP implementation on the

host CPU is 1.85 in average when 4 threads are used.

�
�
��
��
��
��
��
��

�
��
�
��
�	


��

�




��

�

��	
���
��������
��� ����������������� ��� !"

Figure 10: Normalized speedup of HP-RDA over the sequen-

tial algorithm. Performance statistics include data transfer

between CPU and GPU but omit time spent in instrumenta-

tion and trace collection.

C. Accuracy Of Results

To estimate the accuracy of results computed by our HP-

RDA algorithm, Figure 12 shows the resulting histograms

generated by our HP-RDA (with and without the result

correction step) and the sequential algorithms for 6 float-

ing point SPEC benchmarks. Figure 13 shows the same

comparison for 6 integer SPEC benchmarks. In Figure 12,

three benchmarks, 168.wupwise, 173.applu, and 178.galgel,

show visible differences in the results computed by our

�
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Figure 11: Normalized speedup of evaluating the whole

instrumented application with HP-RDA over using sequen-

tial algorithm. Performance statistics include data transfer

between CPU and GPU and the cost of instrumentation and

trace collection.

HP-RDA algorithm when the final solution adjustment step

(see Figure 4) is omitted. However, when including the

adjustment step, the difference is reduced to a negligible

degree. Similar behavior can be observed for the three

integer benchmarks, 181.mcf, 197.parser, and 255.vortex, in

Figure 13.

To quantify the degree of differences between the results

computed by our HP-RDA and the sequential algorithms, we

use H bins to divide each of the three histograms computed

by the varying algorithms. For each i = 0, ..., H , if the

sequential algorithm places ai values inside the ith bin of

its histogram, and our HP-RDA algorithm places bi values

to the corresponding bin, we compute an average error rate

e as:

e = ΣH
k=1(hk)/H hk =| ak − bk |

Figure 14 shows the average error rates of HP-RDA with

and without the final solution adjustment step. In particular,

the adjustment step was able to reduce the average error rate

from 1.2% to 0.37% in average and under 1% in all cases.

Note that even without the probabilistic model based

solution adjustment step, the error rate is relatively small.

Therefore, we provide an extra option –disable-adjusting to

turn off the adjustment step to further reduce the runtime

overhead of our algorithm when desired by developers.

D. Performance Breakdown

Figure 15 breaks down the performance statistics of our

HP-RDA algorithm into four components based on the

time spent in local thread-level analysis, merging thread-

level results, merging thread-block-level results, and final

adjustment of solutions. Here for most benchmarks, thread-

level local analysis is the most time-consuming. This is not

surprising, since each thread needs to create the hash table,
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Figure 12: Reuse distance histograms computed for 6 benchmarks in CFP2000 by sequential algorithm and HP-RDA with

and without the final adjustment step. X axis is reuse distance, Y axis is the fraction of references with reuse distance less

than or equal to x.

maintain the hash nodes, scan the local array, and compute

reuse distances inside its local trace. All these operations

incur frequent global memory references and thus are among

the most significant sources of execution time. A single

exception is the 171.swim benchmark, which references a

large number of memory accesses without much reuse inside
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Figure 13: Reuse distance histograms computed for 6 benchmarks in CINT2000 by sequential algorithm and HP-RDA with

and without the final adjustment step. X axis is reuse distance, Y axis is the fraction of references with reuse distance less

than or equal to x.

thread-level local traces (shown in Figure 13).

E. Tuning Parameters

Our HP-RDA algorithm is parameterized by the following

architecture-specific parameters which we manually tuned to

achieve satisfactory performance on GPUs.

• trace size, denoted as N, is the size of memory traces

to be transfered from CPU to GPU one at a time;

i.e., the size of the memory trace that the instrumented

application each time uses to invoke the reuse distance

analysis plugins. This parameter is constrained by the

global memory size of GPU. We determined its value
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Figure 15: Performance breakdown of HP-RDA.

under the constraint 36 ∗ N < 3GB and set its value

to be 0x4000000 for convenience.

• Hash table size, denoted as HS. To efficiently hash

the memory addresses from the input trace, we set the

hash table size to be 2*N, where N is the size of the

input memory trace.

• Memory pool size, denoted as MS. Our algorithm

implementation on the GPU uses two memory pools

for dynamic objects allocation. Distinct elements are

allocated in the memory pool for hash nodes, and their

repeated appearances in the other pool. We allocate the

total memory pool to hold N elements, and the memory

consumption is estimated as 20*N bytes, where N is

the size of the input memory trace.

• Size of thread-level trace, denoted as ST. This param-

eter determines the workload of each CUDA thread.

When ST is too small, the accuracy of the algorithm

could be reduced. We determined the value of this

parameter together with the CUDA threads organiza-

tion. Suppose the number of CUDA thread blocks is

NTB, and the number of threads per block as NB, the

constraint NTB ∗NB ∗ ST = N is enforced. Further,

we fixed NB to be 64, as a larger value could cause the

GPU shared memory to be exhausted. This parameter is

sensitive only to the underlying GPU architecture and

is independent of the user application being analyzed.

Figures 16 and 17 show the accuracy and execution time

under different configurations. It can be observed that the

accuracy of results decreases when ST becomes smaller.

In particular, when ST = 16384, the analysis result is

very close to that of the sequential algorithm. Combining

Figures 16 and 17, we can set ST to be 2048, which was

the configuration used for our evaluation.
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Figure 16: Accuracy varying with ST .

�

�

��

��

��

��

��

��

��

�$�%� %�/� ��/$ ���% ���� ��� ��$

��
��
"�
���
-�
�

�
*


�
�,

Figure 17: Analysis time varying with ST.

VI. RELATED WORK

A. Reuse Distance Analysis Algorithms

Reuse distance analysis was originally introduced by

Mattson Et. al [18] under the name stack distance, and has

been widely-used to model the reuse of data in caches on

modern architectures [8], [9] and to understand the memory

system behavior of applications. Ding et. al used reuse

distance to predict whole-program locality of applications

by revealing their global reuse patterns [9]. Shen et. al used

the analysis to identify program locality phases [25]. Zhong,

10901090



Shen, and Ding then further developed locality analysis to

generate a parameterized model to predict cache miss rates

across different program inputs [34].

Compiler researchers also leveraged reuse distance anal-

ysis to guide memory-aware optimizations. Beyls et. al

used reuse distances to generate cache hints for load/store

instructions [6]. Li et. al used reuse distances to evaluate the

potential benefits of register allocation for array elements on

scalar processors [15]. Marin et. al used reuse distances to

identify significant memory access patterns causing cache

misses and to provide insight for improving data reuse [17].

Zhong et. al defined a k-distance analysis to guide array

regrouping and structure splitting [35].

As computer architectures evolving towards multicores,

Ding and Chilimbi focused on statistical modeling of mul-

tithreaded reuse distances by combining data sharing and

thread interleaving information with per-thread reuse dis-

tance analysis [7]. Schuff et. al used the sampling method

to go beyond statistical modeling and to track interactions

between threads [23]. For multi-processor programs, existing

research has focused on modeling destructive interferences

among separate processes contending for limited cache

resources [14], [28].

B. Accelerating Reuse Distance Analysis

Researchers have used a number of data structures, includ-

ing m-ary tree [4], blocked hashing [4], AVL-tree [20], and

splay tree [26], to promote the efficiency of reuse distance

analysis. Ding et. al also leveraged approximate reuse dis-

tance analysis to reduce the analysis cost [9]. However, even

under the best implementations, analyzing every memory

reference of a program slows down its evaluation by at least

1-2 orders of magnitude [26].

A common approach to accelerating reuse distance analy-

sis is through sampling, which randomly selects a number of

instructions and a trigger to control the start of the analysis.

Zhong and Chang [33] presented a sampling-based method

which organizes data accesses into a tree and then separates

the analysis into a “sampling period” and a “hibernation pe-

riod”. The tree is modified only during sampling period and

is read to compute reuse distances only during hibernation.

Schuff et. al used sampling in their multicore reuse distance

analysis algorithm [23]. While sampling accelerates reuse

distance analysis by controlling the trace generation, our

focus is on parallelizing the trace analysis to take advantage

of the massive number of parallel processing nodes in GPUs.

C. Using GPU to Accelerate Irregular Applications

Most irregular applications require customized optimiza-

tion when porting to GPUs. Prabhu et. al [21] presented a

linear-algebraic encoding approach for higher-order control-

flow analysis. Solomon and Thulasiraman [27] analyzed the

performance of porting two irregular applications, matrix

parenthesization and breadth first search, to GPUs. Joseph

et. al [13] presented a parallel implementation of the Particle

in cell (PIC) algorithm on GPUs.

While hash tables are widely-used on traditional CPUs,

their implementations on GPUs are not straightforward.

Hong et. al [11] presented a hash table implementation

on GPU together with a lightweight memory allocator.

Zhang et. al [32] presented a hash table implementation

on GPU both with and without atomic operations sup-

ported. Amossen and Pagh [3] introduced a new data layout,

BATMAP, to accelerate item set mining for set intersections.

Many researchers have parallelized tree searching or

traversal algorithms, e.g., the k-D tree traversal algo-

rithm [12], decision trees and forests [24], and B+ tree

search [10], on GPUs. However, we are not aware of any

other existing algorithm for implementing balanced tree

creation and rotations on GPUs.

VII. CONCLUSION

This paper presents a highly-parallel reuse distance analy-

sis algorithm (HP-RDA), which reformulates the sequential

algorithm so that massive parallelism can be exploited using

the SPMD execution model on GPUs. We have used a

hybrid data structure of hash table and local arrays to

flatten the traditional tree representation of memory access

traces, and have used a probabilistic model to correct any

loss of precision from a straightforward parallelization of

the original sequential algorithm. The HP-RDA algorithm

is evaluated on a Fermi platform, and our experimental

results show that up to a factor of 20 speedup can be

achieved comparing with a sequential implementation of the

algorithm, with less than 1% average error.
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